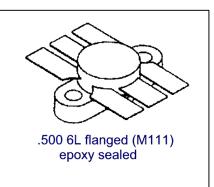
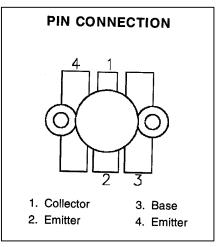


140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013 PHONE: (215) 631-9840 FAX: (215) 631-9855

MS1251


RF & MICROWAVE TRANSISTORS VHF MOBILE APPLICATIONS


Features

- 175 MHz
- 12.5 VOLTS
- **P**_{OUT} = 45 WATTS
- $G_P = 6.5 \text{ dB MINIMUM}$
- INPUT MATCHED
- COMMON EMITTER CONFIGURATION
- VSWR = 20:1

DESCRIPTION:

The MS1251 is an epitaxial silicon NPN planar transistor designed primarily for 12.5 V, Class C VHF communications. This device utilizes diffused emitter resistors to achieve 20:1 VSWR capability at rated operating conditions.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector - Base Voltage	36	V
V _{CEO}	Collector - Emitter Voltage	18	V
V _{CES}	Collector - Emitter Voltage	36	V
V _{EBO}	Emitter - Base Voltage	4.0	V
Ι _c	Device Current	6.0	Α
P _{DISS}	Power Dissipation	145	W
TJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

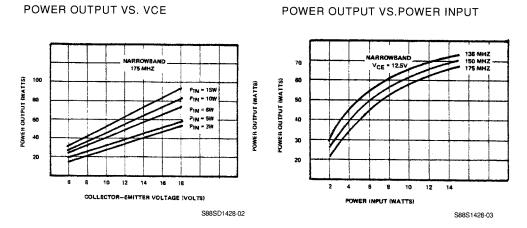
Thermal Data

R _{TH(J-C)} Junction-Case Thermal Resistance	1.2	°C/W
---	-----	------

ELECTRICAL SPECIFICATIONS (Tcase = 25°C) STATIC

Symbol	Test Conditions			Value			Unit
			Mi	n.	Тур.	Max.	Onit
BV _{CBO}	I _c = 50 mA	$I_E = 0 \text{ mA}$	36	5			v
BV _{CES}	I _c = 50 mA	$V_{BE} = 0 V$	36	5			V
BV _{CEO}	I _c = 50 mA	I _B = 0 mA	18	3			V
BV _{EBO}	I _E = 10 mA	I _c = 0 mA	4.0	D			V
I _{CES}	V _{CE} = 15 V	I _E = 0 mA		-		5	mA
H _{FE}	$V_{CE} = 5 V$	$I_{\rm C} = 5$ A	20)		200	

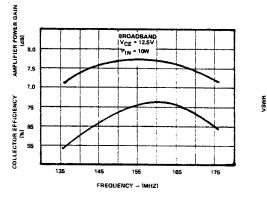
DYNAMIC

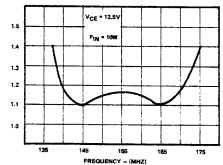

Symbol	Test Conditions		Value			Unit	
Symbol	Test conditions			Min.	Тур.	Max.	Onit
Ρουτ	f = 138 - 175 MHz	P _{IN} = 10 W	V _{CE} = 12.5 V	45			W
G _P	f = 138 - 175 MHz	P _{IN} = 10 W	V _{CE} = 12.5 V	6.5			dB
ηc	f = 138 - 175 MHz	P _{IN} = 10 W	V _{CE} = 12.5 V	50			%
Сов	f =1 MHz	V _{CB} = 12.5 V				135	pF

IMPEDANCE DATA

FREQ	$Z_{IN}(\Omega)$	$Z_{CL}(\Omega)$		
175 MHz	1.38 + j0.44	1.70 + j0.48		
P _{IN} = 10 W V _{CE} = 12.5 V				

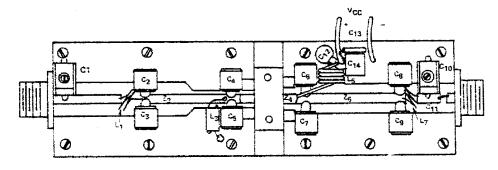
TYPICAL PERFORMANCE

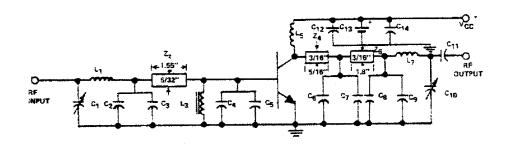



Advanced Power Technology reserves the right to change, without notice, the specifications and information contained herein Visit our website at **WWW.ADVANCEDPOWER.COM** or contact our factory direct.

TYPICAL PERFORMANCE (CONTINUED)

POWER GAIN & COLLECTOR EFFICIENCY vs FREQUENCY


INPUT VSWR vs FREQUENCY


COLLECTOR CAPACITANCE vs VOLTAGE

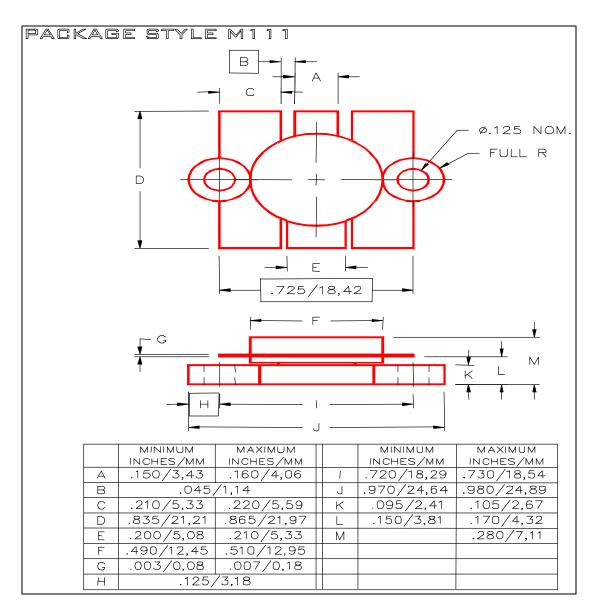
TEST CIRCUIT

L1

L3 L5

L7

C1, C10	:	4 - 40pF ARCO 403
C2	:	39pF Unelco
C3	:	56pF Unelco
C4	:	82pF Unelco
C5	:	100pF Unelco
C6, C7	:	200pF Unelco
C8, C9	1	62pF Unelco
C11	1	.015f Erie Red Cap
C12	1	.01f Erie Disk
C13	:	4.7f Electrolytic


C14 1000pF Unelco

- 2 Turns, #18 AWG, 1/4" I.D., Wire Spacing, Enameled
- vk200 Ferroxcube 4 Turns, #16 AWG, 1/4" I.D., Close Wound, Enameled Enameleo 2 Turns, #16 AWG, 17/64" I.D., Wire Spacing, Enameled Approx. 8.1mH Approx. 2.3mH Approx. 10.1mH

- Z2 Z4 Z6

PACKAGE MECHANICAL DATA

Advanced Power Technology reserves the right to change, without notice, the specifications and information contained herein Visit our website at **WWW.ADVANCEDPOWER.COM** or contact our factory direct.